
Large Language Models and Hardware Design
August 16, 2024

Cynthia Shao
and Jiming Chen
Cornell University,

Computer Systems Laboratory
Research Assistant

Jordan Dotzel
Cornell University,

Computer Systems Laboratory
PhD Candidate

Zhiru Zhang
Associate Professor

Computer Systems Laboratory
School of Electrical and Computer Engineering

College of Engineering
Cornell University

Funding Provided by ELI Undergraduate Research Grant



Abstract—Large-language models (LLMs) like GPT-4 have
become indispensable tools for software development and can
currently suggest software designs, produce high-quality, create
test cases, and iteratively debug programs. Yet, due to a lack of
open-source design and additional performance complexities,
these tools have not been as explored within hardware design.
This project expands the use of LLMs to hardware design
to assist students and engineers throughout the process. This
model should be able to produce hardware-design language
(e.g. Verilog), debug common issues, and iteratively suggest
coding improvements.

Currently, LLMs are benchmarked on their ability to
complete very simple designs [1]. We gauge the ability of
LLMs, such as GPT-4o, Claude 3.5 Sonnet, and Gemini, to
complete the labs from ECE 2300, Cornell University’s course
on digital logic and computer organization, and find that in
most cases, multiple turns are required with the user needing
to debug the code and provide feedback to the LLM. This
indicates that LLMs do not exhibit the ability to reason well
about hardware designs of at least moderate complexity, such
as finite state machines and working across multiple modules.

In addition to testing existing closed-source LLMs, we
explore fine-tuning models. Fine-tuning GPT-3.5 Turbo and
GPt-4o mini on a filtered version of an existing dataset [2]
benchmarked worse than the frontier GPT-4 and GPT-4o
models, which are not available for fine-tuning. To achieve
better results, we are creating a larger dataset which would
be fine-tuned on an open-source model, such as Llama 3.

1. Introduction

1.1. Background

The rapid advancement of large-language models
(LLMs) like GPT-4 has revolutionized various fields, par-
ticularly in software development. These models, based on
deep learning techniques, are capable of understanding and
generating human-like text by processing vast amounts of
data. Trained on diverse datasets that include code, docu-
mentation, and natural language, LLMs can suggest software
designs, generate high-quality code, create test cases, and
iteratively debug programs, making them invaluable tools
for developers. However, despite their success in software,
the application of LLMs in hardware design has not been
as extensively explored. This is primarily due to the lack
of open-source models tailored for hardware design and the
unique challenges posed by the complexities of hardware
design tasks.

Understanding how LLMs work provides insight into
both their potential and their current limitations in hardware
design. LLMs are trained on massive datasets, which are
crucial for their performance. These datasets typically con-
sist of a wide range of text and code, enabling the models
to learn the patterns, structures, and nuances of language
and programming. The quality and diversity of the training
data directly impact the model’s ability to generalize to new
tasks. In the context of hardware design, where specific

knowledge of hardware description languages (HDLs) like
Verilog or VHDL is required, the availability of specialized
datasets becomes even more critical. Without extensive and
high-quality datasets in this domain, LLMs may struggle to
produce accurate and effective results.

The superiority of closed-source models like GPT-4 in
many tasks, including software development, stems from
their access to vast, high-quality datasets and extensive
resources dedicated to their training. These models are
typically trained on data that is not publicly available,
which includes proprietary information and large-scale cu-
rated datasets. This enables closed-source models to per-
form better than open-source alternatives. However, this also
makes them more expensive to train and deploy. Training
an LLM involves running computations across thousands
of GPUs over weeks or months, costing millions of dol-
lars. Inference—using the model to generate outputs—is
also resource-intensive, requiring significant computational
power, especially for large models like GPT-4.

Fine-tuning is a process where an existing LLM, pre-
trained on a broad dataset, is further trained on a smaller,
more specialized dataset to adapt it to a specific task or
domain. For example, a general-purpose LLM might be fine-
tuned on a dataset of HDL code to improve its performance
in hardware design tasks. Fine-tuning allows the model to
learn from more specific examples, making it more effective
in the target domain. However, fine-tuning closed-source
models is often not feasible due to the lack of access to the
model’s internal parameters. As a result, open-source mod-
els are more attractive for tasks requiring domain-specific
expertise, even if they currently lag behind closed-source
models in general performance.

Hardware design involves the creation and validation
of digital circuits and systems, often using HDLs. Unlike
software, which is primarily sequential and linear, hardware
design requires a deep understanding of parallelism, timing
constraints, and the physical layout of circuits. This adds
layers of complexity that LLMs, which have been pre-
dominantly trained on textual and sequential data, may not
naturally handle. Early attempts to apply LLMs to hardware
design have primarily focused on simple tasks, such as
completing small, isolated design problems. These models
often struggle with more complex tasks, such as reasoning
across multiple modules or handling intricate designs like
finite state machines.

1.2. Objective

This project seeks to bridge the gap between the ca-
pabilities of LLMs in software development and their ap-
plication in hardware design. The primary objective is to
expand the use of LLMs to effectively support the hardware
design process, making these models valuable tools for both
students learning hardware design and professionals working
in the field. Specifically, the project aims to create models
that can not only produce HDL code but also debug and
iteratively improve it, thereby streamlining the hardware
design process.



Before these advancements can be made, it is essential to
establish a baseline understanding of the current capabilities
of existing LLMs in the context of hardware design. To
achieve this, the project involves evaluating the performance
of various LLMs, such as GPT-4o, Claude 3.5 Sonnet,
and Gemini, by testing them on labs from an introductory
hardware design course—ECE 2300 at Cornell University.
These labs cover fundamental concepts in digital logic and
computer organization, providing a practical measure of how
well these models can handle real-world tasks.

By assessing the ability of LLMs to complete these
labs, the project aims to identify specific areas where they
struggle, such as reasoning about complex designs like
finite state machines or working across multiple modules.
Understanding these limitations will inform the subsequent
steps in the project, which include developing and fine-
tuning open-source LLMs specifically for hardware design.

In addition to evaluating current models, the project
explores the creation of larger and more specialized datasets
to fine-tune open-source models like Llama 3. The ulti-
mate goal is to enhance the ability of LLMs to handle
the complexities inherent in hardware design, making them
as indispensable in hardware engineering as they have
become in software development. Through this dual ap-
proach—benchmarking existing models and advancing their
capabilities—the project aims to enable more efficient and
effective design processes across the industry.

1.3. Summary of Report and Results

In this report, we highlight the two major parts of our
research. First, we describe how we tested LLMs’ abilities to
complete the labs for Cornell’s ECE 2300: Digital Logic and
Computer Organization. We show that for simple designs,
they were able to produce functional code. However, for
longer, more complex designs, multiple turns were needed,
with a lot of the design coming from debugging on the user
end. Second, we describe benchmarking LLMs according
to the VerilogEval benchmark and benchmarking fine-tuned
models. We show that frontier-level closed source models
outperform smaller models fine-tuned on small datasets but
will continue to find datasets that benchmark better.

2. Materials and Methods

2.1. ECE 2300 Labs

As an assessment of the performance of the current
close-sourced models, we first focused on evaluating Chat-
GPT, Claude 3.5 Sonnet, and Gemini. Below is the structure
we proposed to evaluate the Cornell ECE 2300 labs.

We took advantage of ChatGPT’s multimodal input in
the user ChatGPT-4o interface.

Prompt: I have provided a lab handout, a directory
of Verilog files to be completed, and a prelab hand-

out mentioned in the original lab handout. Below
are the [file names provided in lab structure]. Please
complete [first file name]. Specifically, this involves
completing [file modules within this first file]. You
may create files if needed. Make sure variable names
are consistent with the provided information and
files. Add comments to explain your reasoning.

Each time the model produced an incorrect design or
code, we identified what was incorrect and tried to lead
the model to correcting the problem. For example, consider
the following interaction with GPT-4o in which the LLM
produces partially incorrect code and is told to fix it.

Assistant:

// tffp.v - T Flip-Flop with Enable and
Preset

module tffp(
input wire CLK,
input wire CLR,
input wire T,
output reg Q

);

always @(posedge CLK) begin
if (CLR) begin

Q <= 1’b0;
end else begin

if (T) begin
Q <= ˜Q;

end
end

end

endmodule

User:

Make sure that the inputs and outputs of tffp.v are
CLK, RESET, T, and Q. This is in tutorial B.

Assistant:

// tffp.v - T Flip-Flop with Enable and
Preset

module tffp(
input wire CLK,
input wire RESET,
input wire T,
output reg Q

);

always @(posedge CLK) begin
if (RESET) begin

Q <= 1’b0;
end else begin



if (T) begin
Q <= ˜Q;

end
end

end

endmodule

Figure 1. An interaction between a user and GPT-4o. Completing the
labs involved multiple turns. Note that the assistant (LLM) responses are
abridged to only show the relevant code, as there was accompanying text
and other modules as well.

In this fashion, a user could guide GPT-4o to produce
correct Verilog code. Since the user response depended on
what the LLM produced, we measured the number of turns
required to arrive at functional code.

2.2. Evaluation Methodology

In addition to testing if LLMs could complete ECE 2300
labs, we used an open-source, domain-specific evaluation
benchmark to evaluate LLMs we had API access to, mainly
OpenAI’s GPT models and models we fine-tuned ourselves.

The specific benchmark we used was VerilogEval [1],
which is comprised of 156 (out of 182) problems from
HDLBits, a website where users can practice their hardware
design with a collection of simple Verilog problems. In
recent literature so far, VerilogEval has been a reliable
benchmark for LLM-generated Verilog code. The modules
and problem descriptions being relatively simple, flagship
LLM models have been performing consistently higher than
60% accuracy.

Firstly, using OpenAI’s API, we ran the following mod-
els through VerilogEval: GPT-4o, GPT-4, GPT-4 mini, GPT-
3.5-turbo January, GPT-3.5-turbo November, and our fine-
tuned models. These models are all the current OpenAI
models open for API use.

VerilogEval doesn’t include a script to get responses
from the models, so we created that ourselves, using the
OpenAI API and various jsonl (a formatted text file) pack-
ages in Python to make asynchronous calls to the API and
fetch the responses to the detailed descriptions. The API
calls are structured as follows:

We begin with a system prompt that is concatenated with
a detailed prompt provided by VerilogEval.

System Prompt: You only complete chats with
syntax correct Verilog code. End the Verilog module
code completion with ”endmodule”. Do not include
module, input and output definitions.

Description Prompt: (example from VerilogEval)
Create 8 D flip-flops with active high asynchronous
reset. The output should be reset to 0. All DFFs

should be triggered by the positive edge of clk.

top_module(input clk, input [7:0] d,
input areset, output reg [7:0] q);

We wrote a script to combine the provided VerilogEval
descriptions and the provided top module code headers.
We decided to provide the top module headers because the
LLM has trouble sticking to the exact variable names when
prompted to create code for a module, and the evaluation
function of VerilogEval has no flexibility when running the
LLM-produced code.

We edited the evaluation script to provide an entire csv
that contained all the error messages, how many test cases
the LLM produced code passed, and out of all 156 problems,
and at what rate the LLM passes. In the literature, papers
use a pass@k metric, where they let the LLM take multiple
attempts (k attempts) and take the attempt that passes. In this
way, pass@k should yield higher results. For lack of time
and resources, we only produced a pass@1 result, which is
something we are looking to improve in the future.

2.3. Dataset Creation

We loosely follow the guidelines of the MG-Verilog
dataset and their definition of what makes a good dataset.
One novel idea that we believed would alter LLM fine-
tuning performance would be adding waveform and error-
handling knowledge to the dataset. Waveforms are graphs
engineers use to debug and view the entirety of the variable
outputs and inputs, and we believe that LLMs using this
knowledge may be able to generate less erroneous Verilog
code. This work is in progress, and we have not yet devel-
oped a concrete method.



3. Results

In each lab, there were parts (A, B, etc.), and each
part had modules that needed to be completed, e.g. tffp.
Each module would be contained in a .v file which would
compile with the other Verilog files in the project to produce
a working project.

Lab Module GPT-4o Sonnet Gemini
Pre-Lab 2A tffp.v 1

treg4bit 1
Lab 2A tcounter.v 1

lab2 1
Lab 2B lab2 6

Pre-Lab 3A address generator 1 1
prandom 1 1

countdown 1 1
Lab 3A lab3 18 1 > 9
Lab 3B lab3 (False Start) 8 > 3

lab3 (Mult. Rounds) 28
Lab 4A Test Cases 5

adder 1
shifter 1
logical 1
control 1

alu 2
Lab 4B decoder > 13

TABLE 1. NUMBER OF TURNS ON LABS BY MODULE. “>” INDICATES
WAS NOT INCOMPLETE. BLANK CELLS WERE NOT ATTEMPTED.

Below are the benchmarking and evaluation metrics
that we produced. To reproduce our VerilogEval benchmark
results, please look at our open-source projects on GitHub.

Models Machine Human
Pass@1 Pass@1

GPT-4o 70.6 60.3
GPT-4 67.1 50.6

GPT-3.5-turbo-0125 52.5 32.1
GPT-3.5-turbo-1106 56.6 29.5

GPT-3.5-turbo fine-tuning1 45.5 29.4
GPT-4o-mini-2024-07-18 65.0 53.2
GPT-4o-mini fine-tuning2 58.0 37.2

TABLE 2. VERILOGEVAL BENCHMARKS ON VARIOUS OPENAI MODELS

4. Discussion

4.1. Labs

When completing the labs, we noticed very easy com-
pletion of short (just a few lines) designs, such as the T-
flip-flop from lab 2 or the adder in lab 4. This makes sense,
as the models used are likely to have been trained on many
examples of such common designs. However, when it came
to designs such as the finite state machines (FSMs) in lab 3,
the LLMs generally struggled. While these designs are not
considered super complex from a hardware perspective, they
have more parts to them that the LLM likely has not seen
before, which is why we had to constantly give feedback
about how to correct its implementation.

Additionally, when code becomes more complex and
the LLM has to reason about more things, it can tend

to blatantly defy instructions, e.g. not knowing the name
of a variable no matter how the user asks, requiring the
user to directly tell it. This makes sense considering large
language models have been known to have unfaithful lines
of reasoning at times [3]. On a related note, when creating
test cases for the ALU in lab 4, several turns were needed
because the LLM produced incorrect test cases. This is
because LLMs cannot actually perform arithmetic but rather
produce outputs probabilistically.

In general, we noticed that LLMs could produce func-
tional code when the designs were simple. For complex
designs, they must be trained on many examples of such de-
signs, which may be a difficult task since hardware design is
lower level than software design. Alternatively, success may
also be found through LLMs which have better reasoning
skills. For instance, Claude 3.5 Sonnet performed exception-
ally well in creating the 5-state FSM for lab 3 although faced
struggles later on, but these results are promising regarding
reasoning-based LLMs.

4.2. Fine-Tuning

From Table 2 results, the newest close-sourced models
perform the best out of all models tested, with GPT-4o, GPT-
4, and GPT-4o mini being the best, ranked respectively. The
fine-tuned models perform worse than their parent models,
which leads us to think that the OpenAI fine-tuning via
default parameters may result in worse performance. This
result is quite a surprise, but not out of the realm for
LLM research, as recent literature has seen an increase in
hallucinations in fine-tuned models [4].

Because we do not know the datasets the closed-sourced
models are trained on, we may cause hallucinations by
introducing new knowledge that does not corroborate exist-
ing knowledge. Using open-sourced models whose training
datasets are public may solve this problem.

Further analysis and changing of parameters are needed
to see if fine-tuning a model results in better performance
within the close-sourced realm. The introduction of a new
dataset may provide better results in fine-tuning.

If fine-tuning leads to worse performance overall, we
may need to resort to training open-sourced models from
scratch, which will take excessive resources and extensive
research methods.

Another factor that may have worsened the fine-tuned
model’s performance is the limited amount of tokens. As
mentioned in 1, we used the shortest 100 prompts and an-
swers for the 3.5-turbo fine-tuned model. While the human
benchmark didn’t drop by too much, the machine dropped
by around 11%, while the performance loss for the GPT-4o
mini fine-tuned versus non-fine-tuned loss was only 7%.

5. Conclusion

We explored the powers of close-sourced models Ope-
nAI’s ChatGPT and Anthropic’s Claude as a hardware chat-
bot assistant through multi-turn prompting. Additionally,



we benchmarked both fine-tuned and close-sourced mod-
els using datasets from the literature. Recent close-sourced
models performed better than expected, having no issues
with Verilog syntax issues. New multi-modal prompting
performed worse than plain-text context, which is to be
expected since it is a relatively new feature. Our future
work will be focused on creating a large Verilog dataset,
featuring data that is error-free and compiles. We plan on
using such a dataset to fine-tune an open-source model and
achieve results on par with GPT-4o. We will also focus on
seeing how waveforms affect fine-tuned model performance
and overall user experience.

Acknowledgments

The authors would like to thank PhD candidate Jor-
dan Dotzel and Professor Zhiru Zhang for their amazing
guidance and advice. Additionally, the authors would like
to thank the Computer Systems Laboratory and the fellow
undergraduate research group led by PhD Candidates An-
drew Butt and Yixiao Du and undergraduates Isabella Frank,
Stanley Shen, Steven Yu, Tony Mao, and Anjelica Bian.

References

[1] M. Liu, N. Pinckney, B. Khailany, and H. Ren, “Verilogeval: Evaluating
large language models for verilog code generation,” 2023.

[2] S. Liu, W. Fang, Y. Lu, Q. Zhang, H. Zhang, and Z. Xie, “Rtlcoder:
Outperforming gpt-3.5 in design rtl generation with our open-source
dataset and lightweight solution,” 2024.

[3] T. Lanham, A. Chen, A. Radhakrishnan, B. Steiner, C. Deni-
son, D. Hernandez, D. Li, E. Durmus, E. Hubinger, J. Kernion,
K. Lukošiūtė, K. Nguyen, N. Cheng, N. Joseph, N. Schiefer,
O. Rausch, R. Larson, S. McCandlish, S. Kundu, S. Kadavath, S. Yang,
T. Henighan, T. Maxwell, T. Telleen-Lawton, T. Hume, Z. Hatfield-
Dodds, J. Kaplan, J. Brauner, S. R. Bowman, and E. Perez, “Measuring
faithfulness in chain-of-thought reasoning,” 2023.

[4] Z. Gekhman, G. Yona, R. Aharoni, M. Eyal, A. Feder, R. Reichart,
and J. Herzig, “Does fine-tuning llms on new knowledge encourage
hallucinations?,” 2024.


