Taken FA25. Taught by Noah Stephens-Davidowitz.
Lecture 4: Levin's Universal One-Way Function
One-Way Function Examples The Discrete Logarithm There is an algorithm that runs in $O(\log^2q \cdot \log x)$ and computes $h = g^x \mod q$ for $g \in \mathbb{Z}/q\mathbb{Z}$. We can define $x$ to be the base-$g$ discrete logarithm of $h$ modulo $q$ if $g^x = h \mod q$. We usually assume that DLOG is hard: $$\Pr_{q \sim \mathbb{P}_n, g \sim \mathbb{Z}/q\mathbb{Z}, x \sim \mathbb{Z}/q\mathbb{Z}} [x^\prime \leftarrow \mathcal{A}(q, g, g^x \mod q) \ : \ g^{x^\prime} = g^x \mod q] \leq \varepsilon(n).$$ ...